New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities

نویسندگان

  • Robert J. McEliece
  • Eugene R. Rodemich
  • Howard Rumsey
  • Lloyd R. Welch
چکیده

With the Delsarte-MacWilliams inequalities as a starting point, an upper bound is obtained on the rate of a binary code as a function of its minimum distance. This upper bound is asymptotically less than Levenshtein’s bound, and so also Elias’s.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Upper Bounds on Generalized Weights

weight distribution of linear codes over GF (q l) having generator matrices over GF (q)," \New upper bound on the rate of a code via the Delsarte-MacWilliams inequalities," IEEE Trans.

متن کامل

Rank-metric codes and their duality theory

We compare the two duality theories of rank-metric codes proposed by Delsarte and Gabidulin, proving that the former generalizes the latter. We also give an elementary proof of MacWilliams identities for the general case of Delsarte rank-metric codes, in a form that never appeared in the literature. The identities which we derive are very easy to handle, and allow us to re-establish in a very c...

متن کامل

Improved Delsarte Bounds via Extension of the Function Space

A spherical (n,N, α)-code is a set {x1, . . . ,xN} of unit vectors in R such that the pairwise angular distance betweeen the vectors is at least α. One tries to find codes which maximize N or α if the other two values are fixed. The kissing number problem asks for the maximum number k(n) of nonoverlapping unit balls touching a central unit ball in n-space. This corresponds to the special case o...

متن کامل

Improved Linear Programming Bounds on Sizes of Constant-Weight Codes

Let A(n, d, w) be the largest possible size of an (n, d, w) constant-weight binary code. By adding new constraints to Delsarte linear programming, we obtain twenty three new upper bounds on A(n, d, w) for n ≤ 28. The used techniques allow us to give a simple proof of an important theorem of Delsarte which makes linear programming possible for binary codes.

متن کامل

Inequalities of Ando's Type for $n$-convex Functions

By utilizing different scalar equalities obtained via Hermite's interpolating polynomial, we will obtain lower and upper bounds for the difference in Ando's inequality and in the Edmundson-Lah-Ribariv c inequality for solidarities that hold for a class of $n$-convex functions. As an application, main results are applied to some operator means and relative operator entropy.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 23  شماره 

صفحات  -

تاریخ انتشار 1977